
Authoring (Mastering) a Lib-Ray
Disk
If you are a �lmmaker, you now have the opportunity to release your �lm in the
Lib-Ray format. This has a number of advantages: Relative to DVD, Lib-Ray
o�ers high-de�nition video and high-quality audio options. Relative to stream-
ing videos over the internet or o�ering copies of video �les from download sites,
Lib-Ray o�ers higher video quality (because it's not limited so much by band-
width considerations for download), special features, and organized menus for
handling audio and subtitle setup. Relative to Blu-Ray, Lib-Ray o�ers freedom
from DRM and region-coding, and of course, much lower up-front costs since
you are not paying license fees for the use of the format (Lib-Ray is a free and
open standard).

Yes, You Can Contract This Job...

Of course, since Lib-Ray is brand new (this is only a prototype � version �0.2�),
there are no dedicated authoring tools. Instead, you will need to create your
disk using simple low-level tools, and this will require some skill with Linux
and the command line. If you �nd this daunting, you may want to consider
contracting out the mastering of your Lib-Ray disk (See lib-ray.com for service
o�erings or contact Terry Hancock directly at digitante@gmail.com).

This will cost you some money, but is still very economical compared to
Blu-Ray production. For somewhat less money, we may also o�er certi�cation
of your master disk to assure you and your customers that it truly meets the
Lib-Ray standard.

We also hope to write some authoring software and templates to make do-
it-yourself Lib-Ray easier, but at this point, we are still learning too!

The rest of this document will explain how to create a disk using low level
tools � the same method used to create the prototype disks that we have pub-
lished.

1 Authoring Tools

If you're still with me, then you've decided to master your own Lib-Ray disk
using low-level tools. So I will assume you are either somewhat skilled with
Linux and the command line, or you can learn what you need to know elsewhere.
You will need the following tools (Most of these can be installed using the
package system for your preferred GNU/Linux system. I use Debian, but any
modern GNU/Linux system should do �ne):

• any plain text editor (such as Vim, Emacs, or Kate)

• the Chromium web browser (for testing)

1

• oggz (a command line utility for working with Ogg multimedia streams)

• png2theora (a command line utility provided with the libtheora packages)

• kateenc (a command line utility provided with libkate)

• flac (a command line utility for working with FLAC lossless audio �les)

• audacity (for converting audio formats)

• oggenc (a command line utility for creating Ogg Vorbis streams)

• ImageMagick (a command line based image processing tool)

• iconv (a useful tool for �xing encodings, used on subtitle �les)

• a scriptable shell environment (examples will use tcsh loops for doing batch
jobs, but you could use bash if you're more familiar with it or some other
scriptable shell)

On a Debian GNU/Linux 6.0 �Squeeze� system, you can install all of these with
this command:

apt-get install vim-gtk chomium-browser oggz-tools libtheora libtheora-dev
libkate1 libkate-tools flac vorbis-tools audacity imagemagick iconv tcsh

(Of course, here I've picked Vim GTK as the text editor, but you should pick
your favorite. I actually used Kate from the KDE suite to do most of the editing
on the example �Sintel� disk).

In addition, you will need a copy of the �libray.js� Javascript library from
the lib-ray.org site (or you can copy one from an existing Lib-Ray disk). This
contains the API calls used in the menus. You could theoretically write your
own version, but for interface and dependency reasons, it's better to use the
existing one to get the most predictable results. This library is actually very
small and simple � it's just a collection of convenient scripts for storing the
setup menu information and passing it along to the videoplayer.

You'll also �nd it useful to have a black-�lled 1920x1080 image. This is
easy to create in ImageMagick's interactive GUI application or in other image-
processing applications, such as Gimp. We'll refer to this as �black_1920x1080.png�
when we use it.

You will also need to collect the following materials for your �lm:

• a PNG stream (i.e. a collection of numbered PNG images representing
each frame of your �lm). This is huge, obviously, but it is the simplest
way to be sure you are working with a pure, un-modi�ed version of the
�lm without processing artifacts.

• the completely-processed soundtrack in some lossless audio format such as
WAV or FLAC. This could be multiple �les representing separate audio
channels (as with surround sound) or it could be a single multiplexed �le
(such as multi-channel or stereo FLAC or WAV). Of course, you may want
to provide several alternate versions or commentar tracks, so you should
collect these as well.

2

• subtitles, provided in SRT format (this is the most common format for
distributing subtitles on the web, and is a very simple text format)

• a collection of images and other artwork you want to use in your Lib-Ray
menus

• If you want a sound loop on the main (or other) menu pages, you should
create that (this can be done very nicely in Audacity)

• You should pick a free-licensed TrueType font to use for your menus (this
will be distributed on the disk and used as a �webfont� by the menu pages).

• You may also be creating �special features� pages, which are essentially
just web pages. You may have videos, images, sounds, or text that you
want to use with these, so you'll want to collect that as well.

2 Creating the Feature Media File

The �rst thing we will create is the actual video stream �le. This will be
a complex Ogg Theora �le, with many multiplexed streams to provide video,
audio (including alternate audio), and subtitles. Unfortunately, in Lib-Ray
version 0.2, we are limited to only 20 streams (because this is the maximum
Chromium 6.0 can handle), so we will have to be careful not to exceed that
limit.

2.1 Scale, Clip, and/or Letterbox the Frames

If you are lucky enough to already have your �lm in 1920x1080 pixel format,
then you can skip this step. However, you may have produced your �lm at a
higher or lower resolution. And of course, you may have used a di�erent aspect
ratio � 1920x1080 is a 16:9 aspect ratio. Conventional TV is (was) 4:3. And
it's not uncommon for theatrical presentations to be in wider formats such as
2.35:1 (which happens to be what �Sintel� was designed for).

In the latter case, you'll have to make a choice between clipping your frames
to �t the 16:9 aspect ratio, or �lling in the space with black bars � popularly
called �letterboxing�.

Lib-Ray calls for letterbox or clipped video (rather than leaving the video in
its original form and letting the player resize it), because this avoids playback
problems on some players.

However you decide to handle the resizing problem, you can do the actual
processing with a tcsh loop and ImageMagick's convert and composite utilities. So,
for example, if you had 1024x768 frames (4:3 aspect ratio), you could scale and
inset the frames with a loop like this (the images are assumed to have names
like 0000243.png, with the number representing the frame count).

$ foreach f (*.png)
foreach? convert $f -geometry 1440x1080 temp.png
foreach? composite temp.png black_1920x1080.png -gravity center lb.$f.png

3

foreach? end
>

In this example, the 4:3 video will be scaled up slightly so that it �lls the
screen vertically, and then black bars will be added on the sides to �ll out the
1920x1080 frames. A similar script could letterbox a wide format video to match
the 16:9 aspect with letterbox bars at top and bottom. In general, the letterbox
bars compress very well (they're geometrically simple and don't change), so the
impact on the �nal compressed �lesize will be small.

If you want to clip the video, you'll need to use ImageMagicks �crop� feature,
which would look something like this:

$ foreach f (*.png)
foreach? convert $f -geometry 2560x1080 -crop 1920x1080+320+0 clip.$f.png
foreach? end
>

The result will be a new PNG stream at exactly 1920x1080 pixels, which is the
input for the next section.

2.2 Create the Theora Video Stream

Once the frame images are prepared, creating the Ogg Theora stream is rel-
atively straightforward. For Lib-Ray, we are mostly interested in getting a
high-quality image, and so you should use a quality setting of 10. For Lib-Ray
v0.2, though, it is recommended to leave the chroma setting at the default 4:2:0
setting, rather than using the special chroma �ags, because video players have
some di�culty with the non-standard formats (i.e. 4:2:2 and 4:4:4).

Assuming the source frames are named like �lb.0000491.png�, this might be
done with this command:

$ theora_png2theora -v 10 -f 24 -F 1 -k 24 -o my_video.ogv lb.%07d.png

The options are interpreted as follows:

• �-v 10� sets the quality to 10 (no speci�c bitrate is set)

• �-f 24 -F 1� sets the frame rate to 24/1 (or just 24) per second. Other
common settings would be �-f 30 -F 1.001� for standard NTSC color video
and �-f 25 -F 1� for the PAL frame rate. Of course, �-F 1� is the default, so
I could've left it out

• �-k 24� causes every 24th frame to be a �key-frame� in the encoding � this
controls the seek resolution of the �le. For Lib-Ray, the seek resolution
should be the nearest integer to the frame rate so that there is approxi-
mately one key frame per second

• �-o my_video.ogv� provides the output �lename. This should be an OGV
(�Ogg Video�) �le.

• �lb.%07d.png� is a printf-style format string to match the image �lenames
(seven digit numbers in this example)

4

The command is called �theora_png2theora� in Debian, and is provided by the
�libtheora� package. In other distributions, it might be called just �png2theora�.

2.3 Prepare the Audio Streams

The audio is somewhat simpler, and you are probably already familiar with
some of these tools. Converting separate mono FLAC �les for 5.1 surround
sound into a single 5.1 multi-channel FLAC is a little tricky, but it can be done
by importing the tracks into Audacity and then exporting the project to FLAC
with the �Use Custom Mix� option turned on. This will let you map separate
tracks to separate channels in a multi-channel FLAC �le.

You will also need to create Vorbis audio, which can be done with the com-
mand line tool oggenc, or you can simply export the soundtrack from Audacity
into Vorbis format (which makes sense if you've already got Audacity open).

At minimum, for Lib-Ray v2.0, you should have one Vorbis stereo track (for
Chromium compatibility) and one FLAC stereo track (for high-�delity play-
back). Additional tracks are optional.

2.4 Prepare the Subtitles

For subtitles, you'll need to process the SRT subtitles. You may need to use
other utilities to ensure the encoding is correct (I used Mozilla to view and
test the SRT subtitles for the �Sintel� project. Many were in Windows-speci�c
encodings). The command line utility �iconv� is a handy tool which can convert
many encodings into UTF-8, which is what we'll want.

Once the SRT �les are clean, converting them to Ogg Kate is simple:

> foreach lang (af ar bg bn cz da de en eo es fi)
foreach? echo $lang
foreach? kateenc -t srt -c SUB -l $lang -o ../../OGG/sintel_$lang.ogg sintel_$lang.srt
foreach? end
>

You'll note that in this case, we don't loop through the �le names, but rather
through the languge codes, which we then use to set the �lenames. The lan-
guages are given with two-character ISO-639 codes. This becomes part of the
�lename, but is also embedded within the stream to identify it to the player.

You can create as many subtitles streams as you want, but the ones converted
to Ogg Kate for inclusion in the video �le will be subject to the 20 stream limit:
so assuming that you provide only the video and the vorbis and �ac soundtracks,
you will be limited to 17 subtitle tracks embedded in the �le.

You should save the SRT �les, because they will be used directly as soon
as Chromium is patched to handle subtitle playback correctly. The Ogg Kate
subtitles we are creating here will be combined with the media �le and will be
readable by standalone players like VLC.

5

2.5 Merge the Streams

Once all of the streams are available, it's a simple matter to combine them into
one multiplexed stream:

$ oggz merge my_video.ogv my_vorbis.ogg my_flac.ogg sub_en.ogg sub_fr.ogg sub_es.ogg
-o my_muxed_video.ogv

And that's pretty much it. You should now have a video �le with multiplexed
audio and subtitles.

3 Create the Menus

Next you'll create some HTML5 menus. This is just HTML with some special
design considerations and syntax requiremets set by the Lib-Ray standard. Lib-
Ray requires the following pages:

• index.html (in the top-level directory of the disk) - This is the �main menu�
page. This is the only page whose name cannot be changed.

• Menu/feature.html - This is the page which contains the video itself, and
provides control over it from the HTML5 menus. The actual �le name
can be di�erent, if it makes more sense, though �feature.html� is the rec-
ommended choice for a single feature based Lib-Ray disk.

The following pages are strongly recommended, and the tools for providing them
are part of the libray.js Javascript library:

• Menu/scenes.html - The scene selection menu. Calls to the Lib-Ray �play()�
function implement the links

• Menu/audio.html - Control over the audio track selection. Calls to the Lib-
Ray �setAudio()� function implement the links (not yet supported by view-
ers)

• Menu/subtitle.html - Control over subtitle tracks. Calls to �setSubtitle()�
implement this (also not yet supported by viewers)

Variations are possible: for example, there could be more than one �feature�
page, such as: �episode01.html�, �episode02.html�, etc. Or the �audio� and �sub-
title� pages could be merged into a single �language� or �setup� page (as is
common with DVDs).

3.1 Design Considerations for Lib-Ray Menu Pages

Although Lib-Ray menus are technologically implemented as HTML pages, they
are not �web pages�, and there are a number of good reasons why you should
not design them the way you would a web page. Consider:

• No download penalty � bandwidth is e�ectively unlimited. Feel free to
include full-screen background images

6

• Composition and rendering time is just as bad as ever. Tricks which
speed up webpages by drawing more things locally will probably render
more slowly than just using an image

• The screen size is �xed. Lib-Ray assumes a 1920x1080 pixel display (larger
sizes may be included in later versions). It is assumed that if any scaling
is to be done, the viewer should handle it. This means you don't have to
design for a �exible display size

• The assumption of a �10-foot user interface� means you must use large
fonts and few words. You will also have to provide alternative input meth-
ods (such as tabs and hotkeys)

• Although background music or animated backgrounds are considered tacky
and impolite on the web, they are a normal part of movie menus, and
Lib-Ray disks can certainly use them, via the audio or video tags, or by
animating features using Javascript and CSS.

3.2 Speci�cs for the index.html page

The main menu page needs to have a �Play� button and access to other menus via
hyperlinks. This �Play� button is simply a hyperlink to the �Menu/feature.html�
page (playback is actually initiated automatically once that page is loaded).
The �Play� button (to be compliant with Lib-Ray 0.2), must have an attribute
�tabindex� and it must be set to �1�. It must also have an �accesskey� attribute,
with the value �p�. This is necessary to make the �Play� button on the remote
work as an alternate way to activate the �Play� control on a conforming Lib-Ray
HTPC or player. Here's the HTML code for a typical Lib-Ray compliant �Play�
button:

Play

Typically, of course, there will be additional markup to control the appearance
of the button. For example, there may be a �style� attribute. Or there may be a
�class� attribute used to assign CSS stylesheet values to the button. It may also
be included in a div element or other structure used to provide the desired page
layout. But the attributes above are su�cient to meet the Lib-Ray standard.

Additional links may lead to other menus: the �audio� and �subtitle� (or com-
bined �setup�) menus, for example, or to extras. These are simply hyperlinks.
No special associations are required by Lib-Ray 0.2 (additional accesskey codes
may be required by later revisions of the standard, so as to provide additional
macros for the remote control).

3.3 The Scenes menu pages

One of the most important roles of the menu system is to give viewers a conve-
nient way to jump directly to the scene they want to �nd in the movie. This is
the role of the �scenes� menu (or menus). Unlike the DVD standard, the Lib-Ray

7

standard (v0.2) does not use �chapter� positions in the video �le. Instead, the
scene hyperlink simply changes the playback position to the nearest minute and
second and then links to �Menu/feature.html� so as to play from that position.

This is done in the menu via a Javascript link which actually calls the �play()�
function from the libray.js library. This function takes two arguments: the �rst
is the desired position in minutes, while the second is the seconds. Thus �0, 0� is
the beginning of the �lm at 0:00, and �12:32� is �twelve minutes and thirty-two
seconds� into the �lm.

3.4 The Audio and Subtitle pages

The �audio� and �subtitle� pages work in almost exactly the same way, so I'm
going to cover them together. In both cases, the role of the menu is to set a
value that will be remembered and used by the player to play back the correct
track while the video is playing. Also in both cases, this is actually implemented
with a Javascript link calling a function in the libray.js Javascript library.

The functions used are �setAudio()� and �setSubtitle()�. These functions
actually make no direct changes. Instead, they set values into the browser's
�Session Storage� representing the user's choice. These values can be used by
CSS code to indicate which link has been activated, thus enabling a feedback
display.

When the feature is played, using the �Menu/feature.html� page, it reads these
values from Session Storage and calls Javascript methods on the feature video
element to honor the choice. Regrettably, these methods are not supported by
any browser at the time of this writing (this is hardly surprising considering
the drafts were written only a couple of weeks before now!), so the Audio and
Subtitle features so provided won't actually work, and users who want to see
them will have to wait for upgrades or use a workaround (such as viewing the
�feature.ogv� video �le using a standalone video player).

3.5 The feature.html page

The �Menu/feature.html� page acts as a frame page to control the video player
embedded in the browser. The use of the frame page allows for the video player
attributes to be exposed to the Javascript Document Object Model (DOM), so
that the libray.js Javascript library can control its behavior.

This is not immediately obvious when playing in a fully-compliant browser,
because the video is made to �ll the entire screen, and the CSS used eliminates
the scrollbars that would normally be rendered. When the browser window is
also rendered fullscreen without window borders, the e�ect is much the same as
playing a native video player in fullscreen mode.

For an ordinary single-feature video disk, there is really very little reason to
make any custom changes to feature.html (except perhaps for the title), and the
page is very small, so here is the entire text of a prototype (with no external
tracks):

8

<!DOCTYPE html>

<html>

<head>

<title>Lib-Ray Feature Video</title>

<meta charset="utf-8"/>

<!-- Basic Lib-Ray library communicates menu-based control settings

to video player -->

<script src="libray.js"></script>

</head>

<body onLoad="honor_videosettings();" style="overflow: hidden; overflow-style:

move; margin: 0; padding: 0; border: 0;" >

<video id="feature" preload="auto" autoplay="autoplay" style="margin:

0; padding: 0; border: 0;" width="1920" height="1080">

<source src="../Media/feature.ogv" type='video/ogg; codecs="theora,

vorbis"'/>

Video appears not to be loading. You may want to open the video

file with an external player (i.e. right click and select what player

to open the file with)

</video>

</body>

</html>

Let's go over some of the elements of this �le. The DOCTYPE, html, and head
lines are all part of standard HTML5. The title is supposedly required by the
HTML standard, so I've included a simple generic title � you are free to pick
something more descriptive, such as the title of the video, if you like (in normal
playback, this title won't be visible � though it may appear on the window bar
if you open the document up in the browser's windowed mode).

All of the Lib-Ray disk pages use UTF-8 encoding, as the meta tag indicates.
The libray.js Javascript library is provided for use in all Lib-Ray disks and

provides the basic API for menu design.
The settings on the body tag provide the �fullscreen� appearance, especially

the style attribute with its �over�ow� options.
The video tag uses the correct settings to automatically begin playback from

the �Media/feature.ogv� �le.
A little bit of warning text appears if the browser doesn't recognize the video

tag for some reason. It suggests trying to view the video �le with an external
viewer, which is probably the best option if the browser is not compliant.

Finally, outside the video tag there is an additional anchor with no con-
tent, but an accesskey of �q�, which links back to the main menu. Thus (on
Chromium) a key combination of �Alt+Q� will cause playback to stop and con-
trol to jump to the main menu � which is the behavior we want for the �Stop�
button on the remote, which is what �Alt+Q� should be mapped to.

The HTML5 standard allows for additional subtitle tracks to be added from
external �les.

3.6 Assemble Menus and Video

All of the menus and the multimedia video feature need to be assembled onto
the disk image. Typically, you'll create a directory to represent the disk. Inside

9

it you'll need to create three folders: �Menu�, �Media�, and �Extra�. All of the �disk
menu� pages will go into the Menu folder (except for the main disk menu, which
will be �index.html� in the disk's root directory).

Supporting �les for the menus, including CSS stylesheets, image buttons, and
the �libray.js� Javascript library should also be kept in the �Menu� folder. Menu
sound loops are a gray area, but they should normally go in the �Media� folder
(you can refer to them with a relative link, like this: �../Media/audio_menu_soundloop.flac�).

All of the video features (and featurettes) will go into �Media�, with appropri-
ately descriptive names (�feature.ogv� is the recommended name for the main
feature on the disk, if there is only one. Other names such as �episode01.ogv�
may be used to distinguish multiple features, if you prefer).

If you have external SubRip SRT subtitle �les to include on the disk (e.g.
to escape the 20-stream limit in the current version of Chromium), then these
should be stored in the Media directory, too. The SRT �les should use the
same �lestem as the feature they apply to with an underscore and then an ISO
language code, followed by the �.srt� extension. So, for example, for the main
feature's Spanish subtitle track, the �lename should be: �feature_es.srt�. The
reason for this naming convention is that some video viewers (like VLC) will
automatically detect and load such subtitle tracks when loading the video �le.

It's a matter of author discretion whether �Disk Extras� should be included
in the �Menu� directory or the �Extra� directory, but you should understand what
the choice will mean to the viewer in terms of �Lib-Ray Compliant� players.

To be considered compliant, a player must completely support the disk menu
system under �Menu�. However, you must not include any links to external
resources in the disk menus � in other words, they must be self-contained on the
disk (of course, you can have a links into the other directories on disk, including
the �Extra� directory). A compliant player (such as a Home Theater PC) can,
however, elect to completely ignore all content in the �Extra� directory and/or
refuse to load external links. This is essentially a data security consideration
for the viewer, as well as a matter of convenience for o�ine use.

On the other hand, general purpose desktop computers will be able to access
the �Extra� folder's contents in the normal way, and the content there is uncon-
strained by the above rules: you can provide links to external web resources,
as well as use non-HTML content (such as PDFs � just like this one on the
prototype disk � or even software packages).

4 Write Metadata

Now that we have a watchable disk. First, load the cover art in an appropriate
image editor and export an image at least 750x1000 pixels in size (750 wide and
1000 high). This image can be a JPEG (�cover.jpg�) or a PNG (�cover.png�).

Next we'll need to create the metadata �le. This can be very simple (here
are the contents of the �meta.cnf�:

[Lib-Ray]

Mandatory fields

10

LibRayVersion: 0.2

LibRayID: 1 # ID for the producer (sign up for this with lib-ray.org)

DiskID: 2 # ID for this disk (you assign this number)

Cover: cover.jpg

Title: Sintel

[Copyright]

Date: 2010

RightsOwner: Blender Foundation

RightsURL: www.blender.org

License: Creative Commons Attribution Only, Version 3.0, Unported

LicenseURL: http://creativecommons.org/licenses/by/3.0

This �le follows the common �INI� or �conf� format. It is divided into labeled
sections, and each section contains a series of key-value pairs. I hope to have
a more well-de�ned set of keywords in the �nal Lib-Ray standard, but for the
prototype, we have just these few.

The mandatory �elds include �LibRayVersion� which for this prototype should
read �0.2�. This is the version of the Lib-Ray standard that the disk is meant to
conform to � players will be able to use this �eld to provide backward compati-
bility in the future. The �eld �LibRayID� is meant to contain a unique publisher
ID registered with lib-ray.org.

No formal process for assigning these IDs has been established yet, but you
can email me (Terry Hancock), and I'll give you a number and keep a record
to avoid collisions (these numbers will be above 1000). Otherwise you can pick
a number in the 100-1000 range (reserved for public experimental disks. 0-100
are reserved for use by lib-ray.org). Once you are assigned a number (or pick
one), you should use that on all of your disks.

The next �eld, �DiskID� is a unique alphanumeric identi�er that you assign
to the disk. You can use numbers, letters, dashes, or underscores. There should
be no spaces or other characters. The length is your decision, but can't exceed
256 characters (compliant players can ignore IDs longer than this). The idea of
course is that you can use whatever ID system works for you. Here, I've simply
used �2� to indicate that this is the second prototype disk. Combined with your
assigned LibRayID, this forms a globally-unique identi�er for the disk.

The �Cover� �eld, of course, refers to the cover image. This currently must
be either �cover.jpg� or �cover.png�.

The �[Copyright]� section is not mandatory for Lib-Ray compliance, but will
probably be used a lot. The �Date� �eld provides the copyright year. The
�RightsOwner� is whoever owns the copyright for the work (not necessarily the
creator, so there can be a separate �Creator� �eld). The �RightsURL� optionally
provides a URL for the rights-holder. The �License� �eld identi�es the license
under which the work is released. This can use common license names, or it
can say �All Rights Reserved� for conventional proprietary publications. Another
�eld, �LicenseURL� can provide a link to a complete copy of the license.

If you choose, you can provide more complex metadata in XML-RDF format,
using conventional controlled vocabularies such as Dublin Core in another top-
level �le, �meta.rdf�, and referred to by an extra keyword �MetadataRDF� in the

11

�[Lib-Ray]� section, like this:

MetadataRDF: meta.rdf

However, the �meta.cnf� �le is still required to be Lib-Ray compliant. Players
are not required to read this data, but may do so for enhanced functionality.

5 Burn the Disk

Finally, of course, you'll want to put the data on a disk. This can be done with
a variety of burner tools. For �Sintel�, I put the data on a single-layer DVD-R.

For full-length movies, it's unlikely that even a double-layer DVD-R will
su�ce. For those movies, I recommend using a Blu-Ray �BD-R� disk. These
are dye-based optical disks (like the DVD-R and CD-R) and are not subject to
the same kinds of DRM problems. You can burn these on your own system or
have the disks duplicated commercially (there are companies that can do this
for you).

Either way, of course, you'll need to make an ISO. I used �K3B� to do that.
First, I started a �New Data Project�. Then I moved the three top level

�les and three top level folders into it. I gave the volume a descriptive name
(�SINTEL_LibRay_v0.2�), and then clicked on the �Burn� button. From there,
it's necessary to select �Only create image� unless you just want to burn it
immediately to a disk. You can determine where the ISO will be stored by
using the �Image� tab. It's very important to go to the �Filesystem� tab and
select �UDF� � this is the high volume format preferred for data DVDs, and it
allows �les to be over 2 GB (the �feature.ogv� �le is very likely to be larger than
this!).

Then click �Burn� and wait for it to �nish � now you have Lib-Ray ISO. You
can of course also opt to burn the data straight to a DVD-R disk (larger movies
may require larger media, such as BD-R disks).

To make a �Lib-Ray Flash� movie instead, you can simply copy the same �le
structure onto a Flash card or USB stick of su�cient volume (the Sintel ISO is
about 2.1 GB).

�That's all!�

12

